Abstract
Background
Diabetic neuropathic pain (DNP) is severe and intractable in clinic. The specific cellular and molecular mechanisms underlying DNP remain elusive and its treatment are limited. We investigated roles of EphB1 receptor in the development of DNP.
Methods
Diabetic neuropathic pain was produced in male, adult, Sprague-Dawley rats by a single i.p. streptozotocin (STZ) or alloxan. Western blot analysis and immunohistochemistry were used to analyse expression of EphB1 receptor as well as the activation of the glial cells and the pro-inflammatory cytokines in the spinal cord. DNP manifested as mechanical allodynia, which was determined by measuring incidence of foot withdrawal in response to mechanical indentation of the hind paw by an electro von Frey filament.
Results
Diabetic neuropathic pain and high blood glucose were exhibited simultaneously in around 70% of animals that received i.p. STZ or alloxan. Phosphorylation of EphB1, activation of the astrocytes and microglial cells, and level of tumour necrosis factor (TNF)-α and interleukin (IL)-1β in the spinal cord were significantly increased in rats with DNP. Spinal blocking EphB1 receptor activation in the late phase after STZ injection significantly suppressed the established mechanical allodynia as well as activation of the astrocytes and microglial cells and activity of TNF-α and IL-1β. However, spinal treatment of EphB1-Fc in the early phase after STZ injection did not prevent the induction of DNP.
Conclusions
EphB1 receptor activation in the spinal cord is critical to the maintenance, but not induction of diabetic pain. EphB1 receptor may be a potential target for relieving the established diabetic pain.
Significance
Activation of EphB1 receptor in the spinal cord is critical to maintaining the established diabetic neuropathic pain, but not to diabetic pain induction. Spinal blocking EphB1 receptor activation suppresses ongoing diabetic neuropathic pain.
from European Journal of Pain http://ift.tt/29YBQ71
via IFTTT
No comments:
Post a Comment